Zurück an den Start

März 3, 2012

Seit einiger Zeit versuche ich, hier auf diesem Blog einen Bogen zu spannen, der uns dabei unterstützen soll, anhand von einfachen (*hüstel*) Rechenbeispielen den Ideen der Relativitätstheorie auf die Schliche zu kommen.

Zuerst hatten wir einen kleinen Ausflug zur Galilei-Invarianz der klassischen Mechanik unternommen (wo eine Kraft bzw. eine Beschleunigung in zwei unterschiedlichen Inertialsystemen immer denselben Wert ergibt, und wo man Geschwindigkeiten vektoriell addieren kann).

Danach schwenkten wir zur Elektrodynamik, wo unter Anwendung der Galilei-Transformation gewisse Widersprüche auftraten, die sich im nächsten Artikel mit Hilfe der Lorentz-Transformation beheben ließen (das haben wir allerdings nur kurz angerissen und nicht wirklich bewiesen).

Jedenfalls kamen wir dahinter, dass Kräfte und Beschleunigungen im Rahmen der Relativitätstheorie keine absoluten Größen mehr sind (ihr Wert ändert sich mit dem Bewegungszustand des Beobachters, auch wenn es sich dabei um Inertialsysteme handelt).

Und jetzt haben wir also den Verdacht, dass die Relativitätstheorie unser gesamtes Denkgebäude mehr oder weniger in sich zusammenstürzen läßt. Immerhin basiert ja die gesamte Physik auf dem Begriff der Kraft, und die soll jetzt unter der LT nicht mehr invariant sein?

So müssen wir also „zurück an den Start“ und wieder bei den einfachsten Begriffen der Mechanik beginnen. Diese findet man in der Kinematik: es sind Raum, Zeit, Position, Geschwindigkeit und Beschleunigung.

Doch vorerst noch die Links zu den fünf bisher erschienenen Artikeln:

  1. Matter matters
  2. Das gute alte Relativitätsprinzip
  3. Widerspruch oder bloß eine Unschönheit?
  4. Alles geht sich sehr schön aus, oder?
  5. Kräfte und Beschleunigungen

Normalerweise ist es das Beste, mit dem Einfachen zu beginnen, und dann immer komplexer zu werden.

Wir werden also keine dreidimensionalen Probleme betrachten, sondern eindimensionale. Anstatt der drei Raumkoordinaten x, y und z wollen wir uns also nur mit einer, der x-Koordinate beschäftigen.

Allerdings wollen wir, sozusagen als „zweite Dimension“, die Zeit zulassen. Wir werden uns also nicht mit ruhenden Systemen beschäftigen sondern mit bewegten.

Da bei der LT die Zeit mittransformiert wird, werden wir erkennen, dass wir bereits für eindimensionale Probleme zweidimensional denken müssen – das werden uns die sogenannten Minkowski-Diagramme zeigen – und dass wir es im allgemeinen Fall also mit einer vierdimensionalen „Raumzeit“ zu tun haben.

Um uns diesen Themen zu nähern, gibt es folgende fünf Artikel

  1. Zurück an den Start (dieser Artikel, 2012-03-03)
  2. Manchmal sind offensichtliche Dinge gar nicht so offensichtlich (2012-03-10)
  3. Länge ist relativ (2012-03-23)
  4. Relativgeschwindigkeiten (2012-03-24)
  5. Einstein und die Zwillinge (2012-03-30)

Gehen wir also über zur Modellbildung.

Für die Modellbildung bleibt uns nichts übrig, als uns auf unsere Anschauung zu stützen. Deshalb ist das folgende Bild noch komplett in der Newton’schen Mechanik verhaftet, in der man die Zeitkoordinate nicht auf einer eigenen Achse aufträgt, sondern sie als „universellen Parameter t“ für die gesamte Animation des Modells verwendet.













Wir wollen nur eine Raumdimension berücksichtigen, beschäftigen uns also mit Stäben, die durch Anfang- und Endpunkt beschrieben werden und sich in Längsrichtung bewegen.

Wir haben in diesem Bild nicht nur eine x-Achse festgelegt, sondern auch eine x‘-Achse, deren Ursprung zum Zeitpunkt t=0 mit dem Ursprung der x-Achse zusammenfällt, dann aber mit der Geschwindigkeit v nach rechts „wandert“.

Obwohl wir laut Relativitätsprinzip von Galileo Galilei nicht zwischen „ruhendem“ und „bewegtem“ Beobachter unterscheiden können – solange beide Systeme sogenannte Inertialsysteme sind -, wollen wir das ungestrichene Koordinatensystem als das „ruhende“ Koordinatensystem bezeichnen und das gestrichene als das „mitbewegte“ (jedoch unter Anführungszeichen).

Wenn sich der Stab nun mit dem gestrichenen Koordinatensystem mitbewegt (also relativ zu diesem ruht), dann bleiben die x‘-Koordinaten seiner Punkte konstant und die x-Koordinaten ergeben sich zu x=x’+v.t.

Zum Zeitpunkt t=0 sind die Koordinatensysteme also identisch (x=x’+v.0, also x=x‘), und für steigende Zeit t muss ein immer größer werdendes Korrekturglied v.t zum gestrichenen Ort addiert werden, um den ungestrichenen Ort zu errechnen.

Man beachte, dass das gestrichene Koordinatensystem sich nicht unbedingt mit derselben Geschwindigkeit bewegen muss, wie der Stab. Der Stab steht hier nur stellvertretend für „irgendein physikalisches Phänomen, das von zwei Beobachtern mit unterschiedlichem Bewegungszustand beobachtet wird“.

Transformation von Orts- und Zeitkoordinaten

Angenommen, wir können ein „Ereignis“ durch ein Tupel (t,x) beschreiben (also durch die „Zeit, zu der das Ereignis stattfindet“, und durch den „Ort, an dem das Ereignis stattfindet“), dann können wir es genauso gut durch ein Tupel (t‘,x‘) beschreiben, wobei sich dieses zweite Tupel aber auf das gestrichene Bezugssystem bezieht, und nicht auf das ungestrichene.

Hier haben wir bereits die relativistische Denkweise vorweggenommen, bei der die Zeit ebenfalls vom Bezugssystem abhängt, sodass es zwei unterschiedliche Werte t und t‘ gibt.

Vorerst wollen wir die Galilei-Transformation erwähnen, die in der Newton’schen Mechanik gilt – und die wir weiter oben bereits intuitiv verwendet haben.

Rücktransformation vom „mitbewegten“ Bezugssystem ins „ruhende“:







Hintransformation vom „ruhenden“ Bezugssystem ins „mitbewegte“:







Hier gehen wir also von einer absoluten Zeit aus (t’=t), die in beiden Bezugssystemen gleich ist. Wir erkennen, dass zur x‘-Koordinate bloß der Term v.t addiert werden muss, um die x-Koordinate zu erhalten. Punkte, die im gestrichenen Bezugssystem ruhen (x’=const), die sich also mit ihm „mitbewegen“, haben so relativ zum ungestrichenen Bezugssystem die Geschwindigkeit v.

Unter den anfangs genannten Voraussetzungen lautet die Lorentz-Transformation wie folgt (nachzulesen z.B. bei Wikipedia).

Rücktransformation vom „mitbewegten“ Bezugssystem ins „ruhende“:







Hintransformation vom „ruhenden“ Bezugssystem ins „mitbewegte“:







wobei folgende Abkürzung verwendet wird:







Man sieht, dass die Lorentz-Transformation eine Lineartransformation ist. Die Parameter v und c sind ja konstant und die Variablen x und t bzw. x‘ und t‘ kommen nur in ihrer ersten Potenz vor.

Das, was die meisten Menschen wahrscheinlich am meisten verstört, ist die Tatsache, dass die einfache Beziehung t=t‘ nicht mehr gilt. Vielmehr gibt es bei der Umrechung von t‘ nach t und umgekehrt einen Faktor γ>1, der bedeutet, dass im Bezugssystem des einen Beobachters mehr Zeit verstreicht, während im System des anderen weniger Zeit verstrichen ist (Zeitdilatation).

Ganz abgesehen von einer additiven Komponente v.x/c2, die auf den ersten Blick „Raum zu Zeit macht“.

Die additive Komponente v.t in der Gleichung für die Ortskoordinate verstört uns übrigens nicht so sehr, denn wir sind sie ja schon von der Galilei-Transformation gewöhnt. Dort haben wir bereits akzeptiert, dass „aus Zeit Distanz wird“, wenn sich ein Objekt bewegt.

Man sieht auch, dass – zum Glück – keines der beiden Bezugssysteme ausgezeichnet ist, da die Hin- und die Rücktransformation sich ineinander überführen lassen, indem man v durch (-v) ersetzt und die gestrichenen Größen mit den ungestrichenen vertauscht.

Das ist auch bereits ein Hinweis darauf, dass v bzw. (-v) tatsächlich die Relativgeschwindigkeit der beiden Bezugssysteme ist – aber ist dem wirklich so? Dieser Frage wollen wir nächstes Mal nachgehen.

Fazit:

Ein „bewegter“ Beobachter wird also einem bestimmten Ereignis die Raumzeit (t‘,x‘) zuordnen, während ein „ruhender“ Beobachter demselben Ereignis die Raumzeit (t,x) zuordnet.

Wenn wir also wollen, dass ein Ereignis immer dasselbe Ereignis bleibt, unabhängig vom Bewegungszustand des Beobachters (wenn wir den „Ereignissen“ also eine absolute „Identität“ beimessen wollen, die außerhalb des Beobachters existiert), dann können wir uns die Konstanz der Lichtgeschwindigkeit – die ja eine wesentliche Voraussetzung für die Lorentz-Transformation ist – nur dadurch erkaufen, daß die Begriffe „Raum und Zeit“, „Gleichzeitigkeit“, „Zeit“ und „Länge“ ihre absolute Bedeutung verlieren, wie wir sehen werden.

Meint

Euer Christoph